What are critical measures of assessing good governance in the bioeconomy?

Stefan Bringezu
Director
Sustainable Resource Futures Group
Center for Environmental Systems Research
Kassel University
Germany

Global Bioeconomy Summit
Workshop *Measuring and Monitoring the Bioeconomy*

19 April 2018
Berlin, Germany
Before one can assess good governance of BE, governance needs sufficient info on performance of BE

Monitoring and assessment is developing

Critical elements are key objectives and indicators
- Starting with SDGs
- Addressing both production and consumption
- Accounting for domestic and transnational impacts
Key objectives of the bioeconomy

- **Social sustainability**
 - Work safety
 - Social integration
 - Workers rights
 - Cooperative focus
 - Legal certainty

- **Development of rural areas**
 - Food security
 - Sustainable final consumption
 - Sustainable production
 - Sustainable infrastructures

- **Contribution to climate protection**
 - Land degradation neutrality
 - Preservation and improvement of air quality
 - Preservation of soil quality and function
 - Preservation and strengthening of biodiversity
 - Preservation of water balance and quality

- **Economic sustainability**
 - Employment
 - Added value
 - Competitiveness
 - Innovation

- **Environment sustainability**

Information in the multi-level system
Systematics of the information

<table>
<thead>
<tr>
<th>Key objectives</th>
<th>Criteria</th>
<th>SDG</th>
<th>Indicators</th>
<th>Scale level / Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to climate protection</td>
<td>Emission of greenhouse gases</td>
<td>13, 9.4</td>
<td>Amount and type of ghg emissions</td>
<td>national/ Destatis EU/ Eurostat international/ IPCC, IIASA</td>
</tr>
<tr>
<td></td>
<td>Carbon storage</td>
<td></td>
<td>Amount of carbon stored in grassland ad forest area</td>
<td>national/ Umweltbudesamt international/ IIASA</td>
</tr>
<tr>
<td>Preservation and improvement of air quality</td>
<td>Gaseous pollutant emissions to atmosphere (beside ghg)</td>
<td></td>
<td>Total emission by type of pollutant</td>
<td>international/ OECD</td>
</tr>
<tr>
<td></td>
<td>Particulate matter</td>
<td>11.6</td>
<td>Particulate matter emissions PM$_{2.5}$</td>
<td>national/ Destatis EU/ Eurostat international/ WHO</td>
</tr>
<tr>
<td>Preservation of waterbalance and -quality</td>
<td>Water quality</td>
<td>6.3</td>
<td>Phosphorus load [and nitrate influx] in ground- and surfacewater</td>
<td>national/ WaterGAP EU/WaterGAP international/ WaterGAP</td>
</tr>
<tr>
<td></td>
<td>Water quantity</td>
<td>6.4</td>
<td>Extraction of ground- and surfacewater</td>
<td>national/ WaterGAP EU/ WaterGAP international/ WaterGAP</td>
</tr>
<tr>
<td></td>
<td>Water scarcity index (WSI)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cause-effect relationships of central importance

Impacts
- Landscape changes
- Hydrology changes
- Biodiversity changes
- Soil degradation
 etc.

Pressures
- Input
 Extraction from environment
 - (Industry)-Minerals
 - Fossil fuels
 - Metal ores
 - Construction minerals
- Biomass
- Water

Drivers
- Production
- Infrastructures
- Consumption

Pressures
- Output
 Release to environment
 - Emission to air and water
 - Waste deposition
 - Dissipative losses

Impacts
- Climate change
- Eutrophication
- Acidification
- Landscape changes
- Hydrology changes
- Biodiversity losses

Conflicts
Risks

Policies
Society
Response

Hazards
Risks
Resource and climate footprints of domestic consumption

- Use of biotic commodities in a country for production, consumption and infrastructures
- Environmental burden in foreign countries
- Environmental burden on national territory
Resource and climate footprints of product consumption

Agriculture FP
Forest FP
Water FP
Material FP
GHG FP
First reference values for the evaluation

Resource input → Final consumption → Environmental pressures

Final consumption:
- Production
- Infrastructures

Derivation headline indicators

Reference values for sustainable resource use

<table>
<thead>
<tr>
<th>Resource and climate footprints</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Crop-) Land</td>
<td>0.20 ha/(Person*a)</td>
</tr>
<tr>
<td>Forest</td>
<td>0.4 m³/(Person*a)</td>
</tr>
<tr>
<td>Water</td>
<td>EU: 1.25 m³/(Person*a)</td>
</tr>
<tr>
<td>Water</td>
<td>110 – 450 m³/(Person*a)</td>
</tr>
<tr>
<td>Greenhouse gases</td>
<td>1.05 t/(Person*a)</td>
</tr>
<tr>
<td>Material</td>
<td>10 t TMC_{abiotic}/(Person*a)</td>
</tr>
</tbody>
</table>

Reference values for the evaluation

- Bringezu et al. (2012)
- Roelich et al. (2011)
- O’Brien (2016)
- O’Brien et al. (2017)
Example: Cropland used for domestic consumption of agricultural goods

- EU-27 used 22% more cropland than domestic cropland area in 2011
- EU-27 used 30% more cropland than the globally available per person cropland of the world population in 2011
- Consumption exceeded 0.20 ha/person which is proxy target for SOS in 2030 (goal: stop loss of biodiv by LUC)

Use of global cropland by the EU-27 for the consumption of agricultural goods

Source: H. Schütz – Wuppertal Institute, based on Bringezu et al. 2012
Before one can assess good governance of BE, governance needs sufficient info on performance of BE

Monitoring and assessment is developing

Critical elements are key objectives and indicators
- Starting with SDGs
- Addressing both production and consumption
- Accounting for domestic and transnational impacts
Thank you very much!

bringezu@uni-kassel.de

Further Info:

www.symobio.de